Untersuchungen im System: Ru-Sn

Von

0. Schwomma, H. Nowotny und A. Wittmann

Aus den Instituten für physikalische Chemie der Universität und der Technischen Hochschule Wien

(Eingegangen am 27. Juli 1964)

Im System: Ru—Sn werden auf röntgenographischem Wege die Phasen Ru₂Sn₃, RuSn₂ aufgefunden und Ru₃Sn₇ bestätigt. Die Phase Ru₂Sn₃ (eigener Typ) ist strukturell eng verwandt mit Ru₂Si₃ und Ru₂Ge₃. RuSn₂ kristalliert wie MnSn₂ (CuAl₂-Typ). Es besteht kein Hinweis auf die Existenz von RuSn₂ mit Pyrittyp. Bei der von *Thomassen* beschriebenen Phase dürfte es sich um Ru₃Sn₇ handeln. Diese Kristallart besitzt einen merklichen homogenen Bereich.

Ru—Sn-alloys have been prepared and examined by X-ray. The compounds Ru_2Sn_3 and $RuSn_2$ have been newly detected. The crystal structure of Ru_2Sn_3 has been determined (Ru_2Sn_3 type) and shown to be related with Ru_2Si_3 and Ru_2Ge_3 . $RuSn_2$ has been found to be isotopic with $MnSn_2$ ($CuAl_2$ type). There is no indication for a compound $RuSn_2$ having pyrite type. The compound described by *Thomassen* probably was Ru_3Sn_7 the latter phase being confirmed.

Im Zusammenhang mit Strukturuntersuchungen an Kombinationen Übergangsmetall—Metametall¹ sollte vorzugsweise das Gebiet der Distannide näher geprüft werden, um einen besseren Einblick in die Bauelemente bei Disiliciden, Digermaniden, Distanniden und Diplumbiden zu gewinnen. *Thomassen*² behauptet, daß im System: Ru—Sn ein Distannid mit Pyrittyp auftritt, doch sind darüber keine näheren Angaben bekannt geworden. Dagegen wurde von *Nial*³ eine Phase Ru₃Sn₇ aufgefunden und deren Struktur ermittelt. Diese stellt einen eigenen kubi-

¹ H. Holleck, H. Nowotny und F. Benesovsky, Mh. Chem. 94, 841 (1963).

² L. Thomassen, Z. physik. Chem. B 2, 349 (1929).

³ O. Nial, Svensk Kem. Tidskr. 59, 172 (1947).

schen Typ dar, der in der Folge mehrfach beobachtet wurde⁴. Da man für Ru₃Sn₇ in sehr grober Näherung eine kubische Indizierung mit: $a' = a/\sqrt{2}$ durchführen kann, wäre möglich, daß es sich bei der Phase "RuSn₂ mit Pyrittyp" in Wirklichkeit um Ru₃Sn₇ gehandelt hat.

Ruthenium (Fa. Degussa, Hanau, reinst) und Zinn (p. A. Merck) haben wir sowohl in abgeschlossenen Quarzröhrchen gesintert wie auch im Quarztiegel unter Argon zusammengeschmolzen (Hochfrequenzofen). Dabei konnte keinerlei Angriff der Metallschmelze auf die Tiegelwand beobachtet werden. Folgende Ansätze (0,1-0,3 g) wurden hergestellt: 25; 33,3; 40; 50; 60; 66,6; 75 At% Sn. Die Schmelzproben wurden abgeschreckt und anschließend in evakuierten Quarzröhrchen bei 400° C (350 Stdn.), 700° C (100 Stdn.) und 1200° C (20 Stdn.) geglüht.

In den homogenisierten Legierungen wurden lediglich zwei intermediäre Phasen festgestellt, nämlich eine Kristallart mit der ungefähren Zusammensetzung RuSn_{1,5} sowie die schon bekannte Phase Ru₃Sn₇. Dagegen konnten keinerlei Anzeichen für Existenz einer Phase RuSn₂ mit Pyrittyp gefunden werden. Bemerkenswerterweise tritt jedoch in abgeschreckten Legierungen mit 60 At% Sn eine neue Kristallart neben Ruthenium auf, die mit MnSn₂ isotyp ist.

Die Phase Ru₃Sn₇

Diese Kristallart konnte hinsichtlich Zusammensetzung und Struktur vollkommen bestätigt werden, doch weisen die hier ermittelten Gitterparameter $(9,35-9,36_4 \text{ Å})$ auf das Vorliegen eines merklichen Homogenitätsbereiches hin. Ru₃Sn₇ dürfte die stabilste Verbindung des Systems sein und einen kongruenten Schmelzpunkt besitzen. Diese Phase steht mit Zinn einerseits und bei tiefer Temperatur mit RuSn_{1,5} andrerseits in Gleichgewicht.

Die Phase RuSn₂

Diese Kristallart ließ sich bei Ansätzen mit 60 At% Sn nach Abschrecken fassen. Die Auswertung einer Pulveraufnahme von solchen Legierungen ist in Tab. 1 wiedergegeben. Neben freiem Ru liegt eine Phase vor, deren Isotypie mit MnSn₂ unmittelbar daraus hervorgeht. Ihrer Struktur nach wird sie üblicherweise zum CuAl₂-Typ (C 16) gezählt, obwohl in der Koordination des Metametalls insoferne ein Unterschied besteht, als bei einem Parameter z = 0,158 (CuAl₂-Typ) die Paarbildung klar zum Ausdruck kommt, während sich bei größeren x-Parametern, etwa bei x = 0,165, und einem nicht zu hohen c/a-Verhältnis eine Dreier-Koordination der Metametalle auszubilden beginnt. Der Intensitätsvergleich spricht mehr für den größeren Parameter. Allerdings ist hier

⁴ K. Schubert, Kristallstrukturen zweikomponentiger Phasen, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1964.

					_	
(hkl)	10 ³ • sin ² 8 ber.	$10^3 \cdot \sin^2 \theta$ beob.	Intens. beob.	0,158	I ber. für a 0,165	c = 0,170
(110)	64,2		_	1,4	2,3	3,0
(200)	128,4					0,3
(002)	161,6	162,8	888	3,4	3,4	3,4
(211)	201,4	201,9	\mathbf{st}	35,4	34,6	33,1
(112)	225,8	226,2	\mathbf{m}	13,6	12,2	11,2
(220)	257,0	257,6	\mathbf{s}^+	3,7	4,6	5,5
(202)	290,1	291,9	\mathbf{m}^+	11,8	14,1	15,8
(310)	321,0	322,4	\mathbf{m}^+	13,3	12,5	11,8
(222)	418,6			0,9	0,5	0,3
(312)	482,6			0,2	0,1	_
(400)	514,0			0,2	0,4	
(213)	525,0	526,2	\mathbf{m}^+	9,0	8,8	8,4
(321)	558,4			0,3		
(330)	578,0	581,7	SSS	1,0	1,2	1,2
(411)	586,4	586,8	m	5,4	7,6	9,0
(420)	642,0	642,8	s	3,4	3,3	3,0
(004)	647,0	649,5	s	3,5	3,5	3,5
(402)	675,6	675,9	\mathbf{m}	8,2	6,2	4,9
(114)	711,2			0,1	0,2	0,3
(332)	739,6	739,3	\mathbf{st}	13,4	13,9	13,9
(204)	775,5					
(323)	782,0			0,3		
(422)	803,6			0,4	0,5	0,7
(510)	835,0			0,8	0,3	0,2
(431)	843,5			0,3		<u> </u>
(224)	904,0	905,5	s^+	4,1	5,1	6,0
(413)	910,0	909,6	\mathbf{m}	9,3	12,9	15,4
(314)	968,0)	060 0	ant	(40,3	(38, 2)	(35,9
(521)	971,4	969,2	SSU	135,3	127.3	j21,0

Tabelle 1. Auswertung der Pulveraufnahme einer Ru-Sn-Legierung mit 60 At% Sn, CrK_{α} -Strahlung*

* ohne Ruthenium-Linien

wegen des großen Achsenverhältnisses c/a die ideale Dreier-Koordination noch nicht erreicht. Die Entstehung der hexagonalen, wabenförmigen Bauelemente mit 4 b-Metametallen wurde bereits früher diskutiert⁵. Die Gitterparameter errechnen sich zu:

$$a = 6,38_9$$

 $c = 5,69_3$ Å mit $c/a = 0,891_0$

Die interatomaren Abstände ergeben sich mit x = 0,165 zu: Ru—Ru = 2,85; Ru—Sn = 2,78 und Sn—Sn = 2,98 (1) und 3,23 (2). Die Paarbildung ist demnach noch stärker ausgeprägt als die Wabenbildung (K. Z. = 3). Die Röntgendichte ist $\rho_{R\delta} = 9,70$ g/cm³.

1540

⁵ H. Nowotny und K. Schubert, Z. Metallkde. 37, 17 (1946).

Nach Glühen von abgeschreckten Proben, die Ru + RuSn₂ enthalten (1200 bzw. 1000°C), bildet sich die Phase RuSn_{1,5}; andrerseits entsteht nach Abschrecken eines Ansatzes bei 66,6 At% Sn nicht RuSn₂, sondern Ru₃Sn₇. Danach existiert eine weitere peritektische Reaktion: Ru₃Sn₇ + Schmelze = RuSn₂, deren Gleichgewichtstemperatur nur wenig oberhalb jener von: Ru + RuSn₂ = RuSn_{1,5} liegt.

(<i>hk0</i>)	$F_{\mathrm{beob.}}$	F _{ber} .	(<i>h0l</i>)	F _{beob.}	$F_{\rm ber.}$
(100)		17	(002)		0
(200)	23	24	(102)	60	58
(300)	76	89	(202)	77	75
(400)	200	181	(302)	423	434
(500)	148	168	(402)	163	154
(600)	341	339	(502)	. <u> </u>	54
(700)	150	170	(602)	145	123
(110)		7	(702)	83	91
(210)		26	(004)		0
(220)	400	419	(104)	129	140
(310)		16	(204)	73	69
(320)		10	(304)	220	237
(330)		26	(404)	177	145
(410)	94	82	(504)	100	106
(420)	313	281	(604)	140	121
(430)	166	153	(704)	92	92
(440)	93	87	(006)	411	406
(510)		22	(106)	162	153
(520)	69	70	(206)	233	237
(530)		22	(306)	221	200
(540)	84	94	(406)		36
(550)		27	(506)	93	107
(610)	93	79	(606)	152	146
(620)	67	44	(706)	205	243
(630)	174	168	(008)	219	195
(640)	196	212	(108)	102	104
(650)	110	135	(208)	224	202
(710)		38	(308)	224	190
(720)	102	103	(408)	214	192
(730)	-	47	(508)	104	92
			(608)	221	225
1000 V 1000			(0010)		4
			(1010)	164	158
		a	(2010)		47
			(3010)	226	200
			(4010)	120	113
		A	(0012)	226	276
	_		(1012)		9

(2012)

153

169

Tabelle 2. Ru₂Sn₃, beobachtete und berechnete |F|-Werte für die Reflexe ($hk\theta$) und ($h\theta l$)

Die Phase Ru₂Sn₃

Pulverdiagramme dieser Kristallart zeigen eine auffallende Ähnlichkeit mit jenem von RuGe_{1,5}. Insbesondere läßt sich zeigen, daß sich die Intensitätsfolge entsprechend dem zunehmenden Verhältnis des Streuvermögens von *T*-Metall zu Metametall von $OsSi_{1,5}$ über RuSi_{1,5} und RuGe_{1,5} nach RuSn_{1,5} quasi-kontinuierlich ändert.

Abstände		<i>d</i> (Å)	Anzahl der nächsten Nachbarn
Ru—Ru:	······	3,33	4
$\operatorname{Sn-Sn}$:	$\operatorname{Sn}_{\mathbf{I}}$ — $\operatorname{Sn}_{\mathbf{I}}$	3,09	1
	$-Sn_{II}$	3,11	2
	$-Sn_{II}^{\prime\prime}$	3,39	2
	$-Sn_{II}^{II}$	3,47	2
	Sn_{II} — Sn_{I}	3,11	1
	$-Sn_{T}^{\prime\prime}$	3,39	1
	$-Sn_{I}^{\prime\prime\prime\prime}$	3,47	1
	-Sn'tr'	3,28	1
	Sn''	3.50	1
	Snrr''	3.27	2
Sn—Ru:	SnRu	2.82	1
~	$-R_{11}$	2.92	$\overline{2}$
	$-Ru_{III}$	2,59	$\overline{2}$
	Sm Du	9.60	1
	Sull—val	2,00	1
	Ku _{II}	2,04	L
	Ku _{III}	3,33	L
	$-\mathrm{Ru}_{\mathrm{III}'}$	2,64	1
	Ru _{III} $''$	2,79	1

Tabelle 3. Interatomare Abstände von Ru₂Sn₃

Die Werte für die Unterzelle (6,172; 4,958; 0,803) schließen sich an die Werte in der Folge RuSi_{1,5}, RuGe_{1,5} sinngemäß an $(5,53_8; 4,477; 0,808; 5,703; 4,635; 0,813)$.

Mit Hilfe von Einkristallen findet man wieder eine tetragonale Elementarzelle mit:

> a = 6,172,c = 9,915 Å und c/a = 1,6063.

Demnach liegt hier die doppelte Unterzelle vor (Verdopplung in der c-Richtung), wobei die Positionen der Metallatome durch die bekannte diamantoide Anordnung gekennzeichnet sind ⁶.

Mit den Auslöschungen (θkl) nur mit l = 2n kommt unter Berücksichtigung der Metallpositionen als Raumgruppe nur D_{2d}^{6} in Frage.

1542

⁶ O. Schwomma, H. Nowotny und A. Wittmann, Mh. Chem. 94, 681 (1963).

Demnach sind 8 Ru- und 12 Sn-Atome in der Elementarzelle unterzubringen, wobei neben den Punktlagen ohne Freiheitsgrad für 2 Ru_I in 2 b) und 2 Ru_{II} in 2 c) noch 4 Ru_{III} in 4 i) mit z = 3/8 zu liegen kommen. Die Lagen für die Sn-Atome wurden nach einer ähnlichen Überlegung gefunden wie bei Mn₁₁Si₁₉⁷. 8 Sn-Atome sind in 8 j) mit x = 0,216; y = 0,345 und z = 0,083. Die 4 Sn-Atome, welche paarweise gleiches z wie 2 Ru-Atome aufweisen (Übereinstimmung des Rasters c/6 mit c/8) besitzen einen Parameter von x = 0,177 (Punktlage 4 f).

Damit lassen sich die beobachteten F-Werte für $(hk\theta)$ und $(h\theta l)$ in sehr guter Weise durch die Berechnung wiedergeben (Gütefaktor 8%), siehe Tab. 2.

Die interatomaren Abstände für Ru_2Sn_3 gehen aus Tab. 3 hervor. Gegenüber dem Distannid kommt es hier zu keiner Sn—Sn-Paarbildung.

Dem US-Government danken wir für Unterstützung dieser Arbeit.

⁷ O. Schwomma, A. Preisinger, H. Nowotny und A. Wittmann, Mh. Chem. **95**, 1527 (1964).